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ABSTRACT 

Sustainable management of agricultural land, forests, urban areas, and water bodies can prevent 

resource depletion to control environmental degradation. Effective management of agricultural 

lands, forests, urban areas, and water bodies is critical for preventing resource depletion and 

mitigating environmental degradation. Accurate land cover predictions over a 30-year period can 

help policymakers prevent resource depletion and promote sustainability.  

This study analyzed historical data for LC classification and then used the Cellular Automata 

Markov Chain (CA-MC) model to predict future trends. Model reliability is assessed by metrics 

such as the Kappa coefficient, overall accuracy, user accuracy, and producer accuracy. These 

metrics measure the agreement between predicted and actual outcomes. With an overall model 

accuracy of 81.33%, these refinements contribute to the decision-making of policymakers to plan 

sustainable land use, allocate resources, and balance environmental conservation with economic 

development. The model supports stakeholders in identifying LC patterns, particularly in urban 

expansion and deforestation, to promote equitable and sustainable growth. 

Keywords: Urbanization; CA MC; State Transition Matrix; Accuracy, Kappa; Sustainability 

INTRODUCTION 

Accuracy improvement in Land Cover (LC) 

classification for changes provides tangible 

benefits in long-term planning to balance 

economic growth, social equity, and 

environmental conservation. Predicting 

changes after thirty years provides input for 

urban planning and informed decision-

making. The projected model captures 

clustered land, forest, urban, and water 

bodies as the impactful classifications 

(Memarian et al., 2012), (S. Singh & Biswas, 

2022). Historical land data for thirty years is 

trained to estimate future changes and 

promote community engagement as an 

alternative conservation strategy (Subedi et 

al., 2013). The CA-MC model predicts LC 

changes stochastically, where the current 

state(t) is based on the system's previous 

temporal state(t-1). At its core, a State 

Transition Matrix (STM), derived from the 

confusion matrix, forecasts LC changes 

based on observed data (Mondal et al., 

2016). Its elements represent the probability 
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of LC pixels either remaining in the same 

class or transforming to another class 

designated by the cluster dynamics 

(Arsanjani et al., 2011). The model accuracy 

influences the effectiveness of policy 

development to balance economic activities 

and mitigate the impacts of climate change.  

The literature survey reviewed various LC 

models whose accuracy depends on input 

data, model configurations, and 

interpretation of the STM elements. The 

review finds a gap in realistic interpretations 

of non-diagonal elements of STM, as most 

studies focused only on the diagonal 

elements (treating TRUE) to assess the 

accuracy. This study fills the gap by 

redefining some non-diagonal elements of 

the STM as valid (TRUE) land transitions. For 

example, transitions from forest to urban or 

forest to agricultural land are feasible. 

Similarly, changes from land to urban or 

land to water bodies are realistic. These 

inclusions enhance the model's accuracy to 

help policymakers to plan decisively. Thus, 

the study bridges futuristic land 

management using the CA-MC model to 

improve precision in change predictions. The 

goal is to redefine some of the non-diagonal 

elements of the STM to improve accuracy. 

MATERIALS AND METHODS 

The study explores the spatial-temporal land 

changes categorized into (1) land, (2) urban, 

(3) forest, and (4) water bodies. These four 

categories capture the essential components 

of the Earth's surface that directly influence 

ecological balance and serve as 

sustainability indicators (Qiu et al., 2023). 

Land represents open land, agricultural 

fields, crops, sowing areas, or other land 

types important for studying soil health. 

Forests reflect biodiversity and carbon sinks, 

essential for assessing deforestation, 

reforestation, and carbon sequestration 

trends. Urban areas highlight population and 

infrastructure growth, driving energy 

demands and resource consumption. Water 

Bodies encompass lakes, rivers, wetlands, 

and reservoirs for freshwater availability, 

flood control, and aquatic ecosystem health. 

The study reinforces the global relevance of 

predictive modeling and accuracy 

assessment. Policymakers can leverage the 

proposed accuracy refinement to make data-

driven decisions, mitigating rapid urban 

spread and preserving forest areas or 

agricultural land. 

LC Classification 

Unsupervised classification k-means was 

performed on the study area for k=30. Later, 

it was reclassified into (1) Land (LAN), (2) 

Forest (FOR), (3) Urban (URB), and (4) Water 

(WAT) bodies. LAN includes agriculture, crop 

areas, land waiting for sowing, temporary 

empty areas, etc., to encompass diverse 

land types, (2) FOR broadly covers natural 

forests, cultivated plantations, managed 

horticulture areas, etc. These are 

approximately higher than 5m, with a 

canopy of 10% reaching these dimensions 

(FAO, 2016). (3) URB is built-up areas 

including residential, industrial, and factory 

sheds, roads, etc., and (4) WAT includes 

rivers, lakes, canals, and natural or artificial 

reservoirs. These four categories influence 

ecological balance and serve as 

sustainability indicators. Their changes in 

1993 and 2023 are the basis of training the 

model. LC changes projected for 2053 using 
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this model offer future insights into 

urbanization, water body patterns, and 

changes in land and forest. 

LC Prediction 

Leveraging historical data and probabilistic 

rules, the prediction model captures LC 

transformations outlined by the CA-MC 

model. The equation defining the Cellular 

Automata (CA) model used in this study is  

C(t,t+1) = R(C(t),n), where: 

C = discrete cellular states, n = number of 

cellular classifications, t, and t + 1 = two 

consecutive independent time instants, 

and R = transformation rule of cellular state 

changes (Tokihiro et al., 1996).  

The Markov Chain predicts LC changes based 

on the Bayes conditional probability 

equation given by C(t + 1) = 𝑃𝑖𝑗  * C(t) where 

C(t), and C(t + 1) are the two independent 

system for time = t and (t + 1) states, 𝑃𝑖𝑗 = 

state transition matrix calculated by, 

𝑃𝑖𝑗 =

 [
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋮ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

] , 𝑤ℎ𝑒𝑟𝑒 ∑ (𝑃𝑖𝑗) = 1 
𝑛

𝑗=𝑖
; i 

and j are LU types. 

Each element in the transition matrix 𝑃𝑖𝑗 has 

a value between 0 and 1, indicating the state 

change transition probabilities (Pontius & 

Schneider, 2001). The transition of a cell 

state examines the spatial relationships with 

adjoining cells to update its state (Koomen & 

Borsboom van Beurden, 2011). In this 

framework, neighborhood pixels are 

external factors influencing the state 

transitions of a pixel (Hamad et al., 2018). 

The model generates a transition matrix and 

a change map using Artificial Neural 

Network (ANN) that simulates a map for 

2053, using the 1993-2023 changes as a 

reference (Markham et al., 2014). 

Accuracy Assessment 

The overall accuracy assessment measures 

the agreement between observed and 

chance classifications, expressed by K = *P(a) 

– P(e)+ / *1 – P(e)+, where P(a) is the 

probability of correctly observed classified 

image pixel, and P(e) is the probability of 

predicting a classified image pixel (Mary L. 

McHugh, 2012). K, the Kappa Coefficient 

quantifies the accuracy of classifications by 

comparing observed variables with 

predicted classifications. 

Data Collection 

Gurgaon district in Haryana - India, was 

selected for this study due to its rapid 

transformation from an agricultural region 

to an urbanized hub. 
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Fig 1. Location Map of the Study Area 

Fig 1. highlights the study area (inset) on the 

map of India. This study area represents 

broader global trends in urban expansion, 

particularly in the developing regions where 

economic growth and population pressures 

drive significant land-use changes. For 

example, Kenya in Nairobi experienced rapid 

urban spread driven by population growth 

and economic opportunities (Mundia & 

Aniya, 2005). Similarly, the Pearl River Delta 

is a globally recognized example of urban-

industrial transformation (Seto et al., 2002). 

In Sao Paulo, urban growth extended into 

peripheral areas, creating challenges in 

infrastructure, housing, and green space 

preservation (Lima & Magaña Rueda, 2018).  

This study uses Landsat satellite images for 

land classification to predict changes after 

thirty years. A search on Earth Explorer by 

USGS (USGS, n.d.) identified Landsat images 

based on (1) acquisition dates (between 

March to May of 1993 and 2023), (2) 

Gurgaon district contour as the study area, 

and (3) less than 5% cloud cover. The 

satellite scenes have 30-meter spatial 

resolutions, each covering 900m x 900m 

land surface with WRS path and row 

information. Its bands 2, 3, and 4 are in 

visible spectra blue (0.450 - 0.51 µm), green 

(0.53 - 0.59 µm), and red (0.64 - 0.67 µm), 

respectively; band 5 for NIR (0.85 - 0.88 µm), 

band 6 for SWIR 1 (1.57 - 1.65 µm), band 7 

for SWIR 2 (2.11 - 2.29 µm). Various band 
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combinations are used in the study for false-

colored images to display different land 

cover types required in data validation. 

The resulting images with path/row 

information in Table 1 have minimal time 

gaps between acquisitions. Geometric 

corrections applied by USGS using the Dark 

Object Subtraction (DOS) procedure (Zhang 

et al., 2010) were available with data.  

 

Table 1. Landsat Scenes Used for LC Classification 

# Landsat Scene Identifier Acquired Path Row CC* 

1 LC81460412023097LGN00 2023-04-07 146 41 0.3 

2 LC81470402023104LGN00 2023-04-14 147 40 0.5 

3 LT05_L1TP_146040_19930506_20200914_02_T1 1993-05-06 146 40 0 

4 LT05_L1TP_17040_19930513_20200914_02_T1 1993-05-13 147 40 0 

* Cloud Cover 

The relevant two satellite scene pairs (1, 2, and 3, 4) from Table 1 were mosaicked for the study 

area and then cropped according to a contour to create the region of interest. 

 

RESULTS AND DISCUSSION 

The findings highlight the predicted LC 

changes from 2023 to 2053, presented 

through maps and statistical summaries. An 

unsupervised k-means ML model was 

applied with k = 30, a distance threshold = 

0.005, maximum SD = 0.2, and minimum 

class size = 100, producing 30 clusters. These 

clusters were subjected to a supervised ML 

model to reclassify into Land, Forest, Urban, 

and Water (Wang et al., 2019). The accuracy 

assessment is done using overall accuracy, 

user's accuracy, producer's accuracy, and the 

kappa coefficient. Fig. 2 and Fig. 3  The 

model generated the Land Classification 

maps of the study area (district Gurgaon) in 

1993 and 2023, respectively. 
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Fig. 2. Land Classification Map: 1993 (k=4) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Land Classification Map: 2023 (k=4) 
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Fig. 4. Land Classification Change Map from 1993 to 2023 

Fig. 4 is the change map from 1993 to 2023, which indicates the thirty-year land transformation. 

The change of information is used to model the simulated map in 2053. 

 

Class statistics 

Class statistics is the quantitative measure of 

each classification (Gondwe et al., 2021). It 

offers a comprehensive understanding of the 

current state and dynamics of LC, making 

them relevant for sustainable development 

and resource management (Madusanka et 

al., 2022). The selection of four land 

classifications can be coarse for applications 

with finer resolution or granularity. 

However, they adequately provide 

consistency in long-term trends and policy-

framing goals, supporting informed 

decisions for sustainable land management 

and planning.  

The detailed class statistics of the study 

areas are in Table 2 for changes in 1993 and 

2023. Land (LAN) decreased from 67.88% in 

1993 to 62.21% in 2023, a decline of –5.67% 

due to the conversion of agricultural land 

into urban areas or other uses. Forest (FOR) 

declined from 19.53% in 1993 to 16.26% in 

2023, indicating a decrease of 3.26%. The 

reduction can be attributed to deforestation, 

urban expansion, and changes in 

afforestation impacting forest areas. Urban 

areas had 8.89% rise, growing from 12.47% 

in 1993 to 21.36% in 2023. Population 

growth and economic development drove 

the increase in urban areas. Water Bodies 

showed a marginal increase, rising from 
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0.12% in 1993 to 0.16% in 2023. The change 

is due to improved water management 

practices, including creating new water 

bodies or natural fluctuations in water 

levels. 

 

Table 2. Land Usage percent distributions in 1993 and 2023 

Temporal State Year LAN (%) FOR (%) URB (%) WAT (%) Total (%) 

Initial (I) 1993 67.88 19.53 12.47 0.12 100 

Final (F) 2023 62.21 16.26 21.36 0.16 100 

Δ % (F – I) -5.67 -3.26 8.89 0.04  

 

State Transition Matrix (STM) 

The STM has transition elements (S. K. Singh 

et al., 2015) outlining the likelihood of one 

class transitioning to another between 

successive time intervals. Each cell of the 

matrix is a class transition probability. Its 

rows are the initial classes, and the columns 

represent the final classes after a given 

interval.  

Table 3 is the STM of the study area maps 

for 1993 and 2023, used to predict the LC 

map for 2053. The Overall Accuracy (OA) is 

calculated by summing the diagonal 

elements (representing no change 

transitions) and dividing by the total count 

of observations.  

The study, as its novelty, treated specific 

state transitions in non-diagonal elements as 

valid transitions. Transitions from FOR to 

LAN or FOR to URB are valid examples of 

deforestation to improve the model's 

accuracy. 

 

Table 3. STM (1993-2023) for Predicting Land Use Changes by 2053  

Final 2023  

(↓) 

Initial 1993 (→) 

LAN (%) FOR (%) URB (%) WAT (%) Total (%) 

TER 41.42 13.51 7.29 0.07 62.28 

VEG 9.45 4.10 2.68 0.04 16.26 

URB 16.98 1.87 2.44 0.005 21.28 

WAT 0.03 0.06 0.07 0.0001 0.16 

Total 67.88 19.53 12.47 0.12 100 
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Final 2023  

(↓) 

Initial 1993 (→) 

UA *%+ 66.51 25.17 11.45 0.48  

PA *%+ 61.02 20.96 19.54 0.65  

OA *%+ 81.33 

Kappa 0.64 

* User Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA) 

 

Validation 

Validation points were randomly selected 

from the study area to ensure each LC class 

was adequately represented. These points 

were compared with Google Maps and 

corroborated with published data, as shown 

in Table 4. It includes Government published 

reports for 2000 and 2008, with the intent to 

corroborate the trend. The approach has 

limitations but is a practical alternative to 

the non-availability of field-based data 

validation. 

 

Table 4. Year-wise Land Cover Type distribution (%)  

Year Source LAN (%) FOR (%) URB (%) WAT (%) Total (%) 

1993 Landsat7 67.88 19.53 12.47 0.12 100 

2000 * Gov. Report  69.79 18.81 10.92 0.58 100 

2008 * Gov. Report 65.57 19.18 15.07 0.16 100 

2023 Landsat8 62.21 16.27 21.36 0.16 100 

* Gov. Report: Department of Town and Country Planning, Haryana. ((Scott Wilson India Private 

Limited, 2010))  

Accuracy Assessment   

Accuracy Assessment ensures models reflect 

near real-world conditions. It minimizes 

decision errors to reduce economic and 

environmental risks. A reliable classification 

model can be applied to other regions with 

minimal reconfiguration, ensuring 

transferability. This study predicts the LC 

classification map 2053 using the Artificial 

Neural Network – Multiplayer Perceptron 

(ANN-MLP) algorithm (Sajan et al., 2022), 

with parametric values in Table 5. The 

MOLUSE plug-in of QGIS derived trained 

data in 1993 and 2023 to simulate trends in 

2053, which is essential for understanding 

and predicting land cover changes. 
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Table 5. Model Configuration Parameters Used in ANN – MLP 

Parameter Value 

Neighborhood (pixel) 1 

Learning Rate 0.1 

Maximum Iterations 1000 

Hidden Layers 10 

Momentum 0.05 

Number of simulation iterations 5 

 

The configuration parameters are effective 

in learning, model convergence, and 

prediction. Neighborhood (pixel) = 1 

processes the spectral characteristics of 

individual pixels. Learning Rate = 0.1 avoids 

overshooting the optimal solution with 

stable weight updates during back 

propagation. Maximum Iterations = 1000 

ensures sufficient time for the model to 

learn the input data patterns and avoid 

premature termination. Hidden Layers = 10 

captures the nonlinear relationships 

between spectral signatures of land cover 

classes for extracting higher-order features. 

Momentum = 0.5 smoothens the 

optimization process ensuring stability 

during weight updates without overriding 

the effect of the learning rate. 

The model performance had (1) Overall 

Accuracy Δ = - 0.00278, (2) Minimum 

Validation Overall Error = 0.00007, and (3) 

Kappa = 0.993 to simulate changes in 2053. 

Overall accuracy - 0.00278 suggests smaller 

room for improvement in general. The 

minimum validation overall error (0.00007) 

implies prediction accuracy on unseen data. 

The spatial accuracy assessment used 

random sampling across all LC classifications 

to ensure balanced representation. The 

matrices like kappa (0.993) assessed spatial 

misclassifications and validated between 

predicted and reference classifications. 

Sensitivity analysis was conducted by 

varying model hyper parameters and 

evaluating their impact on classification 

accuracy, ensuring the model is not over-

dependent on specific configuration. The 

minimum validation error (0.00007) 

indicates that the model generalizes well to 

unseen data. Table 6 shows the statistical 

measures between predicted and observed 

classifications, highlighting trends in 

urbanization, reduction in forests, and a 

slight decrease in water coverage. 
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Table 6. Transition Matrix Comparing 2053 with 2023  

 

Initial 2023 (→) 

Final 2053 

(↓) 
LAN (%) FOR (%) URB (%) WAT (%) Total (%) 

TER 62.25 0.03 0.0075 0.0021 62.29 

VEG 0.01 14.53 0.03 0.0024 14.58 

URB 0.007 1.71 21.24 0.0182 22.97 

WAT 0.0019 0.001 0.0006 0.13 0.14 

Total 62.28 16.26 21.28 0.16 100 

 UA *%+ 99.95 99.77 99.96 98.29  

PA *%+ 99.97 89.53 99.96 99.97  

OA 98.25% (Correctly Classified Pixel / Total Pixels) 

Kappa 0.96 (Probability of chance agreement) 

* User Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA) 

It captures changes predicted after 30 years. 

It is acknowledged that a finer spatial or 

temporal detail might be required for 

localized studies and applications.  

The study on a vast area covered has 

limitations of ground truth data and 

availability of open-source high-resolution 

satellite images to substantiate model 

training and validation data. Fig. 5 is the LC 

map of the study area of 2053 (simulated). It 

can provide input to balance the need to 

preserve natural resources for sustainability.  
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Fig. 5.   LC Classification Predicted Map (2053)  

An overall change in LAN, implies changes in 

farming practices or deployment of land 

management policies aimed at sustainability 

(Cuong Huu et al., 2023). The decrease in 

forests highlights concerns about 

deforestation or conversion of forests to 

other land uses like urban or agricultural, 

which affects biodiversity, climate 

regulation, and ecosystem services (Tilahun 

et al., 2022). The increase in urban areas, 

driven by population growth and economic 

development, brings economic benefits but 

poses challenges in infrastructure, loss of 

green spaces, and potential environmental 

degradation. The reduction in water bodies 

is minor in absolute terms. Still, it indicates 

issues in water resource depletion, drying up 

lakes or rivers, or conversion of water bodies 

for other land uses. Such a trend will impact 

water availability and aquatic ecosystems. 

The encroachment on water reserve areas 

for agriculture will lead to a decrease in 

water bodies, indicating a shift towards 

other land uses (Razali et al., 2018). Fig. 6 (a, 

b, c, d) shows the percent distribution of 

LAN, FOR, URB, and WAT over the timeline 

for 1993, 2008, 2023, and 2053 (simulated).  
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Fig. 6a. Percentage distribution of LAN 

 

 

 

 

 

 

 

 

Fig. 6b. Percentage distribution of FOR 

 

 

 

 

 

 

 

 

Fig. 6c. Percentage distribution of URB 
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Fig. 6d. Percentage distribution of WAT 

The dotted trend lines, fitting linear 

equations, show the overall data pattern and 

direction, providing insights into long-term 

trends. 

Accuracy assessment has a few challenges. 

Similar spectral signatures of LC types may 

cause misclassification, as pixels may contain 

multiple types, reducing precision (Adhikari 

et al., 2023). Imbalanced LC classes affect 

the model accuracy. Imbalanced LC classes 

occur when some land cover types have 

more samples than others, leading to biased 

models (Kumar et al., 2020). Temporal 

variability due to seasonal changes can alter 

land cover appearance, leading to 

misclassification. The referenced data errors 

in ground truth data can lead to incorrect 

accuracy assessments. Integrated 

techniques in ML, feature reduction 

methods, and high-quality reference data 

can improve classification precision, leading 

to more reliable land management 

decisions. 

Socio-economy 

Socio-economy growth adds stress on 

infrastructure, housing, and public services. 

The loss of vegetation reduces clean air, 

climate regulation, and groundwater 

recharge, which increases costs for 

environmental management. The conversion 

of land to urban areas will pressurize food 

security and loss of farmers livelihood. 

Expanded urban zones increase pollution, 

reduce green spaces, and create heat 

islands, leading to biodiversity loss, 

disrupted ecosystems, and endangered 

species. Rapid urbanization degrades soil 

fertility, agricultural productivity, reduced 

carbon sequestration, and groundwater 

depletion. Innovative urbanization strategies 

and land protection policies can minimize 

the impact of reducing agricultural and 

forest areas. Financial incentives to farmers 

can encourage land sustainability. Rainwater 

harvesting and groundwater recharge 

integrated to urban planning can promote 

nature-based solutions to improve water 

security. Rising urban heat island (UHI) 

effects have increased local temperatures by 
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3-5°C, driving higher energy demand for 

cooling (Taloor et al., 2024). Policies can 

enforce green roofs, reflective materials, and 

tree cover in building codes, green belts 

around cities to regulate temperature. 

Forest loss threatens biodiversity and 

endangered species. Policies extended to 

protect green corridors and implement 

reforestation programs are essential. 

Stringent regulations are needed in the 

Environmental Impact Assessment (EIA) to 

prevent habitat destruction during urban 

development. Policymakers must initiate 

balanced economic growth with ecological 

sustainability by adopting integrated land-

use policies, urban planning reforms, and 

environmental protection measures (Turner 

& Ruscher, 1988).  

Scalability 

Scaling LC models from the study area to 

broader regions or national and global levels 

involves several challenges. It has technical 

limitations, data availability, resource 

constraints, and alignment with policy 

frameworks. ML and simulation models 

become computationally expensive when 

applied to larger datasets with finer 

resolution and an extensive area. Such 

regions may have inconsistent historical and 

limited ground-truth data and need to 

explore alternative datasets or crowd-

sourced ground-truth data.   

With increased data volume, ML processing 

becomes complex and ineffective. 

Algorithms like CNN and RF require 

significant computing power to process high-

resolution images for training and analysis 

(Cavallaro et al., 2015). Managing large 

datasets will also require high-capacity 

advanced storage solutions and distributed 

file systems, adding operational complexity 

(Burgueño et al., 2023). Parallel computing 

frameworks (Cavallaro et al., 2015) can ease 

scalability challenges. Table 7 summarizes 

key challenges and their impact. 

Table 7. Challenges and impact of scalability in LC classification 

Challenge Example Constraint 

High-resolution images require 
higher memory and processing 
power. 

Processing ~100,000 km² 
datasets using DL requires 5–
10 times more memory 
(Hashem et al., 2015). 

Computational 
Constraint 

DL models require extensive 
training in high-dimensional 
data. 

A ten times increase in image 
resolution can increase 
training time by 8-12 times 
(Summers et al., 2022). 

Algorithmic 
Complexity 

 

Scalability in cloud-based computing enables 

efficient processing of large LC datasets. 

Parallel deep learning speeds up training, 

reducing computation time by 50-80% for 

global-scale LC classification. Scalability also 

increases prediction uncertainties due to 

sensor noise, missing data spectral 

variability, and mixing overlapping spectral 

signatures, which all add classification errors 

in heterogeneous landscapes (Li et al., 
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2024). Moreover, a model trained in one 

region may not perform well in another due 

to differences in climate, vegetation, and 

land-use patterns. Future predictions may 

not account for unforeseen climate events, 

land-use policies, or socio-economic 

changes affecting land cover. Scalability 

challenges and prediction errors can lead to 

misclassified land types, causing outdated 

information and unreliable zoning or 

conservation decisions by policymakers. 

Error Margin  

Error margins in LC classification accuracy 

vary based on data resolution, classification 

methods, and other complexities. 

Understanding these margins helps to 

improve model accuracy by selecting 

classification techniques, training data, and 

integrating high-resolution images. Table 8 

has an error margin in critical areas of LC 

accuracy assessment. 

Table 8. Error Margin of influencing factors in LC classification  

Influencing Factors Impact on EM 

Image resolution (higher resolution reduces error) 
Number of LC classes (more classes increase complexity) 
Training data quality (Chen et al., 2022) 

OA ±2% to ±10% 

Dataset size (larger training sets reduce error) 
Class proportions (balanced datasets improve stability) 
(Adhikari et al., 2023) 

Kappa  ±0.05 to 
±0.15 

Similar LC reflectance (example: bare soil vs. urban) 
Sensor resolution (higher resolution reduces spectral overlap) 
(Li et al., 2024) 

Spectral Mixing ±5% to ±15% 

Lower resolution increases uncertainty 
LC heterogeneity (fragmented landscape has higher errors) 
(Stehman, 2013) 

Pixel Resolution  ±5% to ±10% 

* EM (Error Margin) 

The simulated 2053 forecast has 

uncertainties with an error margin that 

accounts for influencing it. The expected 

overall error margin can range between 5-

15%, depending on the accuracy of input 

data and assumptions. 

Lesser image resolution helps to identify 

smaller-scale urbanization and forest areas. 

Errors in the preprocessing phase and 

misclassification due to spectral mixing 

propagate into the model prediction error. 

Reliability and accuracy thus depend on the 

data quality used to derive the STM, but its 

transition probabilities might not account for 

socio-economic or environmental changes. It 

also ignores policy interventions or 

technological advancement. The prediction 

accuracy declines with increased prediction 

interval due to a uniform transition rule 

across the simulation period (Aburas et al., 

2017). It is a challenge to implement the 

interplay of social, human, and economic 

elements into the simulation results (Jafari 

et al., 2016).  

The validation relies on historical 

government reports and comparisons with 
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observed data and satellite images. Any 

deviation in process, inaccuracies in a 

report, or human error in observation will 

impact the reliability of model predictions.  

Addressing the predicted loss of forests and 

water bodies should be a priority to ensure 

ecological balance and long-term 

sustainability. Urban planning should focus 

on creating sustainable cities that minimize 

environmental impacts. 

Way Forward 

The study witnessed significant land change 

transformations that can degrade the 

ecosystems and biodiversity. It invoked an 

environmental sustainability framework that 

can analyze the loss of natural habitats, 

depletion of groundwater resources, and 

increased pollution levels associated with 

urbanization and industrialization (Kumar & 

Singh, 2022). The development processes 

can address socio-economic disparities and 

promote inclusive development as a central 

goal for adopting equitable land use 

practices in the district. 

Collaborating with policymakers is essential 

to overcome scalability challenges, 

particularly with government agencies to 

access administrative datasets, socio-

economic statistics, and ground-truthing 

information. Global organizations like NASA, 

ESA, USGS, and ISRO can support access to 

high-quality satellite images for additional 

study. Private-sector technology firms can 

support advanced computing infrastructure 

and innovative solutions. 

The study has the potential to integrate 

advanced modeling techniques with socio-

environmental factors and complex data 

sources to generate impactful predictions in 

climate change scenarios, including the 

effects of temperature, precipitation, and 

drought on land use or climate-sensitive 

areas like wetlands, mangroves, and 

biodiversity hotspots. By pursuing advanced 

research avenues, LC modeling can evolve 

into a powerful tool for addressing global 

challenges like climate change, urbanization, 

and biodiversity loss. These advancements 

will increase model accuracy and 

applicability of research findings translated 

into actionable insights for sustainable land-

use planning and policy development. 

Continued research and development are 

needed to improve the accuracy and 

reliability of the simulation models. 

Advances in this field will lead to improved 

models that can account for a wide range of 

external factors in complex systems. 

The changed map in 2053 provides early 

caution to protect the ecosystem, as 

substantiated by the model's accuracy and 

reliability in prediction.  
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